00001 
00002 
00003 
00004 
00005 
00006 
00007 
00008 
00009 
00010 
00011 
00012 
00013 
00014 
00015 
00016 
00017 
00018 
00019 
00020 
00021 
00022 
00023 #include "qclinearalgebra.h"
00024 
00025 QCLinearAlgebra::QCLinearAlgebra()
00026 {
00027     
00028 }
00029 
00030 QCLinearAlgebra::~QCLinearAlgebra()
00031 {
00032     
00033 }
00034 
00035 void QCLinearAlgebra::solveTridiagonal(Array<parameterType,1>& a, Array<parameterType,1>& b, Array<parameterType,1>& c, Array<parameterType,1>& unknowns, Array<parameterType,1>& knowns)
00036 {
00037     Array<parameterType,1> tmp;
00038         int n = a.extent(firstDim), startElement = 1;
00039         parameterType bet;
00040 
00041         tmp.resize(n);
00042         if(b(startElement) == 0.0)
00043         {
00044                 cerr << "Tridiagonal Error - First Element of Diagonal is Zero" << endl;
00045                 exit(1);
00046         }
00047         
00048         unknowns(startElement) = knowns(startElement)/(bet = b(startElement));
00049         for(int j = startElement+1; j < n; j ++)
00050         {
00051                 tmp(j) = c(j-1)/bet;
00052                 bet = b(j) - a(j)*tmp(j);
00053                 if(bet == 0.0)
00054                 {
00055                         cerr << "Tridiagonal Error - Zero pivot found (check if Matrix A is Diagonally Dominant)" << endl;
00056                         exit(1);
00057                 }
00058                 else
00059                         unknowns(j) = (knowns(j) - a(j)*unknowns(j-1))/bet;
00060         }
00061         
00062         for(int j = n-2; j >= startElement; j --)
00063                 unknowns(j) = unknowns(j) - tmp(j+1)*unknowns(j+1);
00064 }
00065 
00066 void QCLinearAlgebra::solveTridiagonal(Array<complexType,1>& a, Array<complexType,1>& b, Array<complexType,1>& c, Array<complexType,1>& unknowns, Array<complexType,1>& knowns)
00067 {
00068         Array<complexType,1> tmp;
00069         int n = a.extent(firstDim), startElement = 1;
00070         complexType bet;
00071 
00072         tmp.resize(n);
00073         if(b(startElement) == complexZero)
00074         {
00075                 cerr << "Tridiagonal Error - First Element of Diagonal is Zero" << endl;
00076                 exit(1);
00077         }
00078         
00079         unknowns(startElement) = knowns(startElement)/(bet = b(startElement));
00080         for(int j = startElement+1; j < n; j ++)
00081         {
00082                 tmp(j) = c(j-1)/bet;
00083                 bet = b(j) - a(j)*tmp(j);
00084                 if(bet == complexZero)
00085                 {
00086                         cerr << "Tridiagonal Error - Zero pivot found (check if Matrix A is Diagonally Dominant)" << endl;
00087                         exit(1);
00088                 }
00089                 else
00090                         unknowns(j) = (knowns(j) - a(j)*unknowns(j-1))/bet;
00091         }
00092         
00093         for(int j = n-2; j >= startElement; j --)
00094                 unknowns(j) = unknowns(j) - tmp(j+1)*unknowns(j+1);
00095 }
00096 
00097 void QCLinearAlgebra::solveTridiagonal2(Array<complexType,1>& a, Array<complexType,1>& b, Array<complexType,1>& c, Array<complexType,1>& unknowns, Array<complexType,1>& knowns)
00098 {
00099         Array<complexType,1> tmp;
00100         int n = a.extent(firstDim), startElement = 1;
00101         tmp.resize(n);
00102         for(int j = startElement+1; j < n; j++)
00103         {
00104                 tmp(j) = a(j)/b(j-1);
00105                 b(j) = b(j) - tmp(j)*c(j-1);
00106                 knowns(j) = knowns(j) - tmp(j)*knowns(j-1);
00107         }
00108         unknowns(n-1) = knowns(n-1)/b(n-1);
00109         for(int j = n-2; j >= startElement; j--)
00110                 unknowns(j) = (knowns(j) - c(j)*unknowns(j+1))/b(j);
00111 }